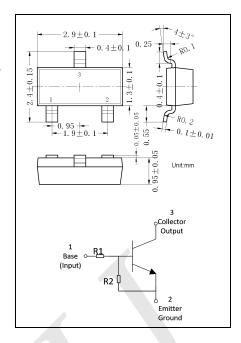


SHENZHEN LONG JING MICRO-ELECTRONICS CO., LTD.

SOT-23 Plastic-Encapsulate Bias Resistor Transistors

2232


NPN Silicon Surface Mount Transistor with Monolithic Bias Resistor Network

Features

- Simplifies Circuit Design
- Reduces Board Space and Component Count

Marking: A8J

R1=4.7k, R2=4.7k

Description

This new series of digital transistors is designed to replace a single device and its external resistor bias network. The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space. The device is housed in the SOT-23 package, which is designed for low power surface mount applications.

Maximum Ratings (T_a=25°C unless otherwise noted)

,				
Symbol	Parameter	Value	Unit	
V _{СВО}	Collector base voltage	50	V	
VCEO	Collector emitter voltage	50	V	
lc	Collector current	100	mA	
P _D	Total Power Dissipation @ T _A = 25°C 1) Derate above 25°C	246 1.5	mW °C/W	

Note

Thermal Characteristics

The final characteristics							
Symbol	Parameter	Value	Unit				
Reja	Thermal Resistance - Junction-to-Ambient 1)	508	°C/W				
T _J , T _{stg}	Operating and Storage Temperature Range	- 55 to +150	°C				
TL	Maximum Temperature for Soldering Purposes,	260	°C				
	Time in Solder Bath	10	Sec				

www.szlongjing.com A Dec. 2016

^{1.} Device mounted on a FR-4 glass epoxy printed circuit board using the minimum recommended footprint.

Electrical Characteristics (T_a=25°C unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit				
Off Chara	Off Characteristics									
V _{(BR)CBO}	Collector-Base Breakdown Voltage	I _C = 10 μA, I _E = 0	50			V				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage ²⁾	I _C = 2.0 mA, I _B = 0	50			>				
Ісво	Collector-base cut-off current	$V_{CB} = 50V, I_{E} = 0$			0.1	μΑ				
Iceo	Collector-emitter cut-off current	V _{CE} = 30V, I _B =0			0.5	μΑ				
I _{EBO}	Emitter-base cut-off current	$V_{EB} = 6V, I_{C} = 0$			1.5	mA				
h _{FE}	DC current gain	V _{CE} = 10V, I _C = 5mA	15		30					
V _{CE(sat)}	Collector-emitter saturation voltage	I _C = 10mA,I _B = 1mA			0.25	V				
On Characteristics										
VoL	Output Voltage (on)	$V_{CC} = 5.0V, V_B = 2.5V,$ $R_L = 1.0k\Omega$			0.2	V				
Vон	Output Voltage (off)	$V_{CC} = 5.0V, V_B = 0.5V,$ $R_L = 1.0k\Omega$	3.3	4.7	6.1	>				
R ₁	Input Resistor		7	10	13	kΩ				
R ₁ /R ₂	Resistor Ratio		0.8	1.0	1.2					

^{2.} Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%.

Typical Applications For NPN BRTs

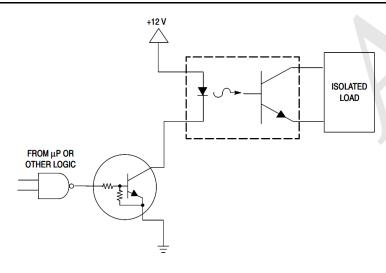


Figure 1. Level Shifter: Connects 12 or 24 Volt Circuits to Logic

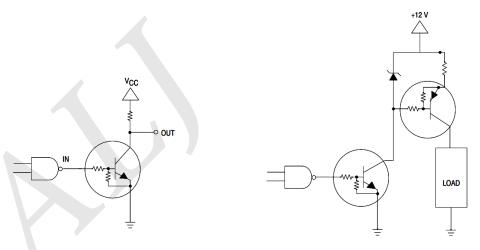


Figure 2. Open Collector Inverter: Inverts the Input Signal

Figure 3. Inexpensive, Unregulated Current Source

www.szlongjing.com A Dec. 2016

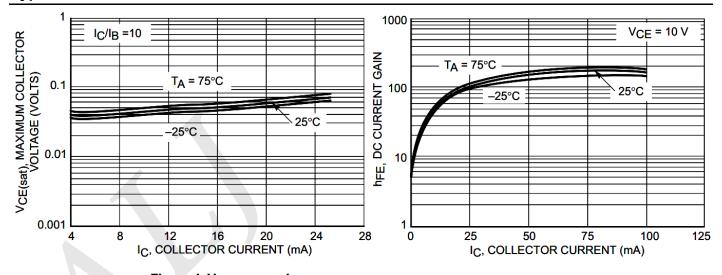


Figure 4. V_{CE(sat)} vs. I_C

Figure 5. DC Current Gain

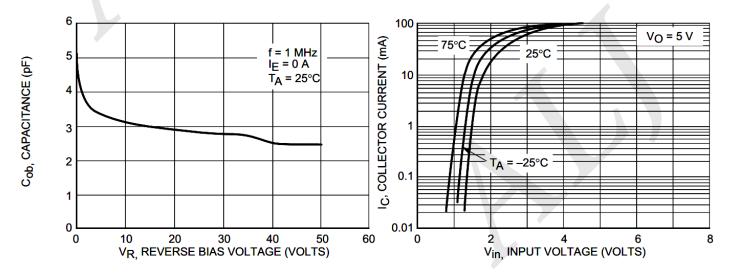


Figure 6. Output Capacitance

Figure 7. Output Current vs. Input Voltage

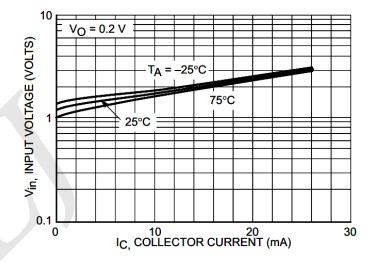


Figure 8. Output Voltage vs. Input Current

www.szlongjing.com A Dec. 2016